Coordinate Systems

Instructional Focus: Represent and calculate with vectors

	4 – Mastery	3 – Proficient	2 - Basic	1 – Below Basic	0 – No
	- Iviastei y	3 – Froncient	Z - Basic		Evidence
Represent	Can extend	Use appropriate symbols for	Use appropriate symbols for	Use appropriate symbols	Little
vectors	thinking beyond	vectors and their	vectors and their magnitude	for vectors and their	evidence
(N.VM.1)	the standard,	magnitude, represent	and represent vector	<u>magnitude</u>	of
	including tasks	vector quantities by	quantities by directed line		reasoning
	that may involve	directed line segments, <u>and</u>	segments.		or
	one of the	find the magnitude and			application
	following:	direction of vector			to solve
		quantities.			the
Solve problems with vectors (N.VM.3)	 Designing Connecting Synthesizing Applying Justifying Critiquing Analyzing Creating Proving 	Solve problems involving velocity and other quantities by converting given direction and magnitude quantities into component vectors, calculate the resultant vector, and find the resultant direction and magnitude or the angle between vectors	Solve problems involving velocity and other quantities by converting given direction and magnitude quantities into component vectors, and calculate the resultant vector	Solve problems involving velocity and other quantities by converting given direction and magnitude quantities into component vectors	Does not meet the criteria in a level 1
Operations with vectors (N.VM.2, N.VM.4, N.VM.5)		Find the components of a vector by subtracting coordinates Add, subtract vectors graphically and componentwise, and determine the magnitude and direction Multiply a vector by a scalar and determine the magnitude and direction	Find the components of a vector by subtracting coordinates Add, subtract vectors graphically and componentwise Multiply a vector by a scalar	Find the components of a vector by subtracting coordinates Add, subtract vectors graphically <u>or</u> componentwise Multiply a vector by a scalar	

N.VM.1 (+) Recognize vector quantities as having both magnitude and direction. Represent vector quantities by directed line segments, and use appropriate symbols for vectors and their magnitudes (e.g., \mathbf{v} , $|\mathbf{v}|$, $|\mathbf{v}|$, $|\mathbf{v}|$, $|\mathbf{v}|$, $|\mathbf{v}|$, $|\mathbf{v}|$.

N.VM.3 (+) Solve problems involving velocity and other quantities that can be represented by vectors.

N.VM.2 (+) Find the components of a vector by subtracting the coordinates of an initial point from the coordinates of a terminal point.

N.VM.4 (+) Add and subtract vectors.

- a. Add vectors end-to-end, component-wise, and by the parallelogram rule. Understand that the magnitude of a sum of two vectors is typically not the sum of the magnitudes.
- b. Given two vectors in magnitude and direction form, determine the magnitude and direction of their sum.
- c. Understand vector subtraction $\mathbf{v} \mathbf{w}$ as $\mathbf{v} + (-\mathbf{w})$, where $-\mathbf{w}$ is the additive inverse of \mathbf{w} , with the same magnitude as \mathbf{w} and pointing in the opposite direction. Represent vector subtraction graphically by connecting the tips in the appropriate order, and perform vector subtraction component-wise.

N.VM.5 (+) Multiply a vector by a scalar.

- a. Represent scalar multiplication graphically by scaling vectors and possibly reversing their direction; perform scalar multiplication componentwise, e.g., as c(vx, vy) = (cvx, cvy).
- b. Compute the magnitude of a scalar multiple cv using ||cv|| = |c|v. Compute the direction of cv knowing that when $|c|v \neq 0$, the direction of cv is either along v (for c > 0) or against v (for c < 0).

Coordinate Systems

Instructional Focus: Represent and calculate complex numbers

	4 – Mastery	3 – Proficient	2 - Basic	1 – Below Basic	0 – No Evidence
Represent on the complex plane (N.CN.4) Operations of Vectors in Polar Form (N.CN.3, N.CN.5)	Can extend thinking beyond the standard, including tasks that may involve one of the following: Designing Connecting Synthesizing Applying Justifying Critiquing Analyzing Creating Proving	Represent complex numbers on the complex plane in rectangular and polar form, and explain why the rectangular and polar forms of a given complex number represent the same number Represent and compute addition and subtraction of complex numbers geometrically on the complex plane Represent and compute multiplication and division, in polar form, of complex numbers geometrically on the complex plane Represent and compute the power and roots of complex numbers, in polar form.	Represent complex numbers on the complex plane in rectangular and polar form Represent and compute addition and subtraction of complex numbers geometrically on the complex plane Represent and compute multiplication and division, in polar form, of complex numbers geometrically on the complex plane	Represent complex numbers on the complex plane in rectangular form Represent and compute addition and subtraction of complex numbers geometrically on the complex plane	Evidence Little evidence of reasoning or application to solve the problem Does not meet the criteria in a level 1
Calculate distance and midpoint (N.CN.6)		Calculate the distance between numbers in the complex plane as the modulus of the difference, and calculate the midpoint of a segment in the complex plane as the average of the numbers at its endpoints	Calculate the difference between numbers in the complex plane, and calculate the midpoint of a segment in the complex plane as the average of the numbers at its endpoints	Calculate the midpoint of a segment in the complex plane as the average of the numbers at its endpoints	

- N.CN.4 (+) Represent complex numbers on the complex plane in rectangular and polar form (including real and imaginary numbers), and explain why the rectangular and polar forms of a given complex number represent the same number.
- N.CN.3 (+) Find the conjugate of a complex number; use conjugates to find moduli and quotients of complex numbers.
- N.CN.5 (+) Represent addition, subtraction, multiplication, and conjugation of complex numbers geometrically on the complex plane; use properties of this representation for computation. For example, $(-1 + \sqrt{3} i)^3 = 8$ because $(-1 + \sqrt{3} i)$ has modulus 2 and argument 120°.
- N.CN.6 (+) Calculate the distance between numbers in the complex plane as the modulus of the difference, and the midpoint of a segment as the average of the numbers at its endpoints.

LimitsInstructional Focus: Find limits and continuity

	4 – Mastery	3 – Proficient	2 - Basic	1 – Below Basic	0 – No
					Evidence
Find limits	Can extend	Find limits and one-sided	Find limits and one-sided	Find limits and one-sided	Little
	thinking beyond	limits graphically,	limits graphically and	<u>limits</u> graphically and	evidence
	the standard,	numerically <u>, and</u>	numerically. Describe end	numerically	of
	including tasks	algebraically, using proper	behavior (as x approaches		reasoning
	that may involve	<u>notation.</u> Describe end	∞ or $-\infty$) using limit		or
	one of the	behavior (as x approaches	notation).		application
	following:	or -) using limit notation			to solve
					the
Determine	 Designing 	Determine continuity of	Determine continuity of	Determine continuity of	problem
continuity	 Connecting 	functions graphically,	functions graphically and	functions graphically and	
	 Synthesizing 	numerically, <u>and</u>	numerically on its domain	numerically at a given value	
	 Applying 	algebraically on its domain	using the three-part	using the three-part	Does not
	 Justifying 	using the three-part	definition of continuous	definition of continuous	meet the
	• Critiquing	definition of continuous	functions.	functions.	criteria in
	 Analyzing 	functions.			a level 1
	 Creating 				
	 Proving 	Determine values for which	Determine values for which	Determine values for which	
		a function is discontinuous,	a function is discontinuous,	a function is discontinuous.	
		understand the difference	and understand the		
		between removable and	difference between		
		nonremovable	removable and		
		discontinuities, and be able	<u>nonremovable</u>		
		to redefine functions to	discontinuities.		
		make them continuous			
		when possible.			
				Determine whether a one-	
		Find finite and infinite one-	<u>Find</u> finite and infinite one-	sided limit is finite or	
		sided limits, and describe	sided limits.	infinite.	
		asymptotes using limit		manage.	
		notation.			

Find limits and one-sided limits graphically, numerically, and algebraically, using proper notation. Describe end behavior (as x approaches or -) using limit notation.

Determine continuity of functions graphically, numerically, and algebraically on its domain using the three-part definition of continuous functions. Determine values for which a function is discontinuous, understand the difference between removable and nonremovable discontinuities, and be able to redefine functions to make them continuous when possible. Find finite and infinite one-sided limits, and describe asymptotes using limit notation.